

The Use of Ventilator Graphics to Optimize Mechanical Ventilation During ARDS

John Davies MA RRT FAARC Duke University Medical Center Durham, NC

john.davies@duke.edu

Presenter Disclosure Information

John Davies MA RRT FAARC:

Within the past 12 months, the presenter has had a financial interest/arrangement or affiliation with the organizations listed below:

Teleflex Philips Healthcare Consultant Advisory Board

Pathogenesis of ARDS

Ventilator Graphics and ARDS

- Pressure-Volume Graphics
 - Traditional
 - Slow flow
 - Stress index
- Airway vs Trans-Pulmonary Pressure
- Patient Ventilator Synchrony

Traditional Airway Graphics

"Protective" targets = VT< 6 ml/kg <u>AND</u>: Pplat < 30 cm H2O, "Best" compliance titration with PEEP

Breath Characteristics

Decreased Compliance

Slow Flow Maneuver

Pres

Overdistention/Under-recruitment injury

Airway Pressure

Stress Index

Airway Pressure Release Ventilation (APRV)

 Long periods of inspiratory phase followed by brief pressure releases or deflation periods

$$\begin{split} & \mathsf{P}_{high} = \mathsf{CPAP} \\ & \mathsf{P}_{low} = \mathsf{Release} \; \mathsf{Pressure} \\ & \mathsf{T}_{high} = \mathsf{Time} \; \mathsf{at} \; \mathsf{P}_{high} \\ & \mathsf{T}_{low} = \mathsf{Time} \; \mathsf{at} \; \mathsf{P}_{high} \end{split}$$

 Patients can breath spontaneously at P_{high}

APRV: pressure target/spont breaths

Ventilator Graphics and ARDS

- Pressure-Volume Graphics
 - Traditional
 - Slow flow
 - Stress index
 - APRV
- Airway vs Trans-Pulmonary Pressure
- Patient Ventilator synchrony

Volume Assist Control

Separating Pressures Related to R, CI, and Ccw

Pes during machine breath reflects passive "push" against Ccw. Pes during spontaneous breath reflects active "pull" against CI and R.

Separating Pressures Related to R, CI, and Ccw

- Peak-Pplat = flow P =10 cm H2O
- Pplat = resp system distention = 30 cm H2O
- Pes = chest wall distention P = 10 cm H2O
- Pplat-Pes = lung distention (TPP) = 20 cm H2O

Transpulmonary P = VILI Risk

- Transpulmonary P: - Pplat-Pes
 - Distending

Influence of chest wall stiffness

 $39 \text{ cm H}_2\text{O}$

39 cm H₂O

Unsafe to add more Paw

Safe to add more Paw

- Key: Keep P_{tp} Exp Pressures ≥ 0 cmH2O
 - Increased abdominal pressures impose a load on the lungs and increase the pleural (esophageal) pressures
 - Maintaining airway pressures at, or above, the esophageal pressures, measured during the expiratory phase, keeps the lung recruited

Pes to assure safety/efficacy of PEEP

Before Paw = 40/13 Pes = 33/20Ptp = 7/-7 After

Paw = 46/26 Pes = 33/22 Ptp = 13/4

NEJM 2008, 359(20);2095-104

Pleural Pressure Measurement MV Guided by Pes in ALI NEJM 2008, 359(20);2095-104

Ventilator Graphics and ARDS

- Concept of VILI
- Pressure-Volume Graphics
 - Traditional
 - Slow flow
 - Stress index
- Airway vs Trans-Pulmonary Pressure
- Patient Ventilator Synchrony

Assisted Ventilation

- The ventilator must interact with the patient and meet his needs
 - Load depends on effort (pt) and applied support (vent)
- A mismatch in patient demand and ventilator response can result in patient ventilator dys-synchrony (PVD)
 - "Tug of war"

Why should we be concerned?

PVD:

- Patient discomfort and dyspnea
- Structural injury to the lungs
- Worse mechanics (intrinsic PEEP)
- Altered gas exchange
- Unnecessary WOB
- Counteract lung protective ventilation (breath stacking)
- Clinician confusion

Types of PVD

Trigger Dys-synchrony

Flow Dys-synchrony

Ventilator response < pt demand

Pmus: Patient Effort

Flow Dys-synchrony in PSV

Cycling Dys-synchrony

Ventilator response > Pt demand

Delayed Cycling

Proportional Assist Ventilation

Neurally Adjusted Ventilatory Assist (NAVA)

- Spontaneous mode
- Specially designed NG with electrodes that pick up the electrical activity of the diaphragm
- Clinician sets cm per microvolt
- IP, Ti, Vt RR all variable

NAVA

Summary

- Pressure-Volume Graphics
 - Traditional
 - Slow flow
 - Stress index
- Airway vs Trans-Pulmonary Pressure
- Patient Ventilator Synchrony